
Rapid Simplification of
Multi-Attribute Meshes

Andrew Willmott
Maxis

HPG 2011

The Goal

Goal

Goal

~10 ms

Why? Real-time Domain

• Need to generate LODs for player-created
models

• Must generate them while the game is
running interactively

• Other demands for CPU, including
generating the original high-res mesh and
textures

Domain

• Specific example:

• Start a level

• Ask server for player creations

• Expand descriptions into model geometry and
textures

• Generate LODs

• Display world and player creations

Worked Example

• Generate 20 meshes x 3 LODs

• Say 10% of CPU per frame

• 10s per LOD -> 1 hour 40 minutes

• 10 seconds -> 16 ms per LOD

Other requirements

• Robustness

• Player-created meshes, not artist-created

• No time for input cleanup passes

• Static LODs

• Need to LOD shaders and animation too

• Generate lowest LODs first

• GPU-friendly simplification

Previous Work

• Rossignac & Borrel [1993]

• Hoppe, Garland & Heckbert [1996-8]

• Out of core: Lindstrom [2000]

• Massive meshes without thrashing

• Vertex clustering and quadrics

• DeCoro & Tatarchuk [2007]

• Vertex Clustering on GPU

Why not QEM + Edge Collapse?

• First thing we tried

• Simply couldn’t get it fast enough

• Sequence of serial operations

• Poor memory access patterns

• Requires triangle connectivity

• Requires collection of manifold surfaces

Vertex Clustering

• Older, less sophisticated technique

• Very fast, very simple, very robust

• Quality not as good as edge-collapse-based
algorithms

Vertex Clustering

• Enclose model with a uniform grid

• Cluster vertices inside cells

• Remap vertex indices according to cells

• Store unique index in grid

• OR use virtual grid: hash map lookup on cell i,j,k

Vertex Clustering

• For all vertices:

• Classify by containing grid cell

• Accumulate representative cell position

• For all triangles:

• Update vertex indices according to cell

• Discard if degenerate

• Compact mesh

Vertex Clustering Advantages

• Fast on modern architectures

• Doesn’t require edge connectivity

• Good memory coherency as Lindstrom
demonstrated

• Two linear passes: vertices then indices

• Robust

• Will take absolutely any mesh you throw at it

LOD for GPU

• Lots of small triangles are bad

• triangle setup

• Sliver triangles also bad

• Traditional simplification focuses on
preserving detail

• Better: match triangle density to pixel
density

• Vertex Clustering a good fit for this

Problem Solved?

(a) 28,184,526 ver-
tices (Original)

(b) 107,872 vertices
(0.3%) time=17:02

(c) 50,000 vertices
(0.1%) time=16:10

(d) 5000 vertices
(0.01%) time=13:48

(e) 1000 vertices
(0.003%) time=12:21

Figure 1: Progressive approximations produced by our algorithm.

Q = (A,b, c) = (nnT, dn, d2)

Q(v) = vTAv + 2bTv + c

To compute the sum of squared distances to a set of planes, we only
need a single quadric that is the sum of the quadrics defined by each
of the individual planes.
In addition to its utility as an error metric, the quadric matrix

also encodes information about the curvature of the associated set
of planes. The 3 x 3 matrixA is the sample covariance matrix of the
set of normals, with mean [0, 0, 0]. If the eigenvalues of the matrix
are ordered from smallest to largest, the corresponding eigenvectors
are the direction of minimum normal variation, maximum normal
variation, and the average normal. For a smooth surface, the direc-
tions of minimum and maximum normal variation approximate the
directions of minimum and maximum curvature [8].

3.2 Dual Quadric Metric
Just as the quadric metric encodes distance from a point to a set of
planes, the dual quadric [8, 10] measures distance from a plane to a
set of points.
Given a set of vertices {v1, ..., vk}, we define the dual quadric

as

Pi = (Di, ei, fi) = (vivi
T,vi, 1)

Pi(n, d) = nTDin + 2ei
T(dn) + fid2

Given a set of vertices {vi}, summing the dual quadrics over all
the vertices we have

P = (D, e, f) = (
∑

Di,
∑

ei,
∑

fi)

This allows us to express the covariance matrix for the set as

Z = D − eeT

f

This formulation neglects the 1
k−1 averaging factor typically used

in computing a covariance matrix, but the eigenvectors and the rela-
tive scale of the eigenvalues are unchanged by this. The eigenvector
corresponding to the smallest eigenvalue is in fact the normal for the
least squares best plane through {vi}. The eigenvector associated
with the largest eigenvalue is the direction in which {vi} exhibits
the most spread.

3.3 Quantizing the Mesh
A quadric quantization is generated in a straight-forward manner.
We simply scan a file describing the input mesh and hash the ver-
tices of the mesh into a table describing a uniform spatial decompo-
sition. In constructing this uniform grid, we assume the bounding
box of the model is known. This is a modest requirement; most
model acquisition methods can provide such information, and in
any case, it is trivial to compute a bounding box by performing an
extra linear scan of the mesh.
Each vertex in the mesh generates a dual quadric that is added

to the containing grid cell. Keeping the standard assumption that
faces are described as triangles, each face will generate a quadric
which is then added to the three cells associated with the vertices
of the face. In our current implementation, the input mesh is de-
scribed as an indexed face set held in a file on disk and is accessed
via memory-mapped I/O managed by the operating system. The
need to look up the vertices corresponding to the face indices could
be problematic if the face set is described without locality. In such
a situation, vertex information would repeatedly be read from disk
and thrashing would likely occur. Lindstrom’s method is able to
guarantee locality, at the expense of increased disk space, by rep-
resenting the model as an unindexed polygon soup. While nothing
prevents our algorithm from adopting a similar strategy, all of the
models we have worked with so far have exhibited enough locality
that generating a polygon soup representation has been unneces-
sary.

4 SIMPLIFICATION ALGORITHM
After quadric quantization of a model, our algorithm builds an
adaptive data structure describing a spatial partition which is used
to cluster the vertices of the model. Since working with the orig-
inal mesh is virtually impossible to do efficiently, we rely instead
on the quadric information gathered during the quantization step.
The algorithm described by Lindstrom [16] uses such a grid to di-
rectly produce a simplified version of the model, with the size of the
grid determining the size of the simplified mesh. In our algorithm,
the grid is only employed as an intermediate approximation to the
original mesh. This approximation is used to generate an adaptive
spatial partition. Increasing the size of the uniform grid increases
the quality of the approximation and resulting spatial partition, but
does not directly affect the size of the simplified mesh. It should be

Problem Not Solved

• Position-based meshes only!

• No normal discontinuities

• Not textured

• Not animated

• No vertex-based material info

• Most game meshes feature all of the above

Attributes!

Animation!

So what happens?

So what happens?

Stuff happens

UV Chart Mixing

The Problem

• Attributes have discontinuities

• UV charts particularly bad

• Also normal/material splits (see paper)

• Can’t just ignore!

Edge Collapse

Edge Collapse Discontinuity

Discontinuity Preserved

Edge Collapse

• Edge Collapse deals with attributes natively:

• Discontinuities are preserved

• Or removed when interior to the collapsed
triangles

• Simplification is a series of discontinuity-
preserving collapses

Vertex Clustering with Attributes

Vertex Clustering with Attributes

Vertex Clustering with Attributes

Oversharing

Input Attributes

Undersharing

Just right

A Close-up

a31
a31

a32

a32a32

a32

Insight: Boundary Edges

Issues

• How do we find the boundary edges?

• How do we use edges to link output
vertices?

• Without memory allocations

• Efficiently

Finding Boundary Edges

Boundary Edges

setLinks

Boundary Edge Chains

a4 a9 a19 attributes

Grouping Edges

• Naive way

• Treat as linked list

• Insertion is O(k), k boundary edges

• O(k2)

• Observations

• Insert k edges, query m edges, m << k

Union Find!

• Amortised O(1) insertion and query

• setLinks stores back pointers

Partial Path Compression

• Don’t do full path compression

• Doesn’t help! In fact hurts

• Extra memory accesses not paid for by results

• Do compress input vertices

• Memory we have to access anyway.

• Does result in minor gains

Building the sets
rv0 = dv0 = ea_n[ev[e0]]
rv1 = dv1 = ea_n[ev[e1]]
level = 0

while (setLinks[rv0]) >= 0)
 rv0 = setLinks[rv0]
 level++

while (setLinks[rv1] >= 0)
 rv1 = setLinks[rv1]
 level--

if (rv0 != rv1)
 if (level < 0)
 setLinks[rv0] = rv1
 setLinks[dv0] = rv1
 else
 setLinks[rv1] = rv0
 setLinks[dv1] = rv0

foreach (iv in 3 Nf)
 i = ev[iv]
 dv = ea_n[i]
 rv = dv

 while (setLinks[rv] >= 0)
 rv = setLinks[rv]

 if (setLinks[rv] == -1)
 setLinks[rv] = -2 - dv;

 if (dv != rv)
 ea_n[i] = -2 - next
 setLinks[dv] = next

QuantiseVertices:
 foreach (i in Nv)
 Generate cell label
 Record replacement index ep[i]
 Accumulate p into representative point p_label

RemoveDegenerateTriangles:
 foreach (i in Nf)
 if (p[ep[ev[3i]]] = p[ep[ev[3i + 1]]] = p[ep[ev[3i + 2]]])
 Discard triangle

Compact:
Share all vertices with identical element references
Remove all unindexed data

rv0 = dv0 = ea_n[ev[e0]]
rv1 = dv1 = ea_n[ev[e1]]
level = 0

while (setLinks[rv0]) >= 0)
 rv0 = setLinks[rv0]
 level++

while (setLinks[rv1] >= 0)
 rv1 = setLinks[rv1]
 level--

if (rv0 != rv1)
 if (level < 0)
 setLinks[rv0] = rv1
 setLinks[dv0] = rv1
 else
 setLinks[rv1] = rv0
 setLinks[dv1] = rv0

foreach (iv in 3 Nf)
 i = ev[iv]
 dv = ea_n[i]
 rv = dv

 while (setLinks[rv] >= 0)
 rv = setLinks[rv]

 if (setLinks[rv] == -1)
 setLinks[rv] = -2 - dv;

 if (dv != rv)
 ea_n[i] = -2 - next
 setLinks[dv] = next

QuantiseVertices:
 foreach (i in Nv)
 Generate cell label
 Record replacement index ep[i]
 Accumulate p into representative point p_label

RemoveDegenerateTriangles:
 foreach (i in Nf)
 if (p[ep[ev[3i]]] = p[ep[ev[3i + 1]]] = p[ep[ev[3i + 2]]])
 Discard triangle

Compact:
Share all vertices with identical element references
Remove all unindexed data

The resulting algorithm is shown above. It requires the allocation
of a single additional scratch array, setLinks, of size Nan , with all
values initialised to −1.

The union operation shown on the left is performed for any singly
degenerate triangle detected during the main triangle removal loop,
and the replacement attribute index lookup on the right is run im-
mediately after triangle removal has finished, on the remaining tri-
angles in the mesh. As shown, the replacement algorithm uses a
simple encoding trick to choose the attribute index of the first ver-
tex visited in each set as the representative attribute, but this can be
replaced with code to generate new attribute indices, if it is desired
to generate more accurate representative attributes later.

4 Quality Improvements

Although preserving attribute discontinuities goes a substantial way
towards allowing vertex clustering to be used in a production situa-
tion, there are several other areas in which we found it necessary to
extend the algorithm to address quality issues.

4.1 Shape Preservation

An issue with vertex clustering in particular is that any feature
smaller than the cell size in at least one dimension will be re-
moved. This can lead to thin but elongated features, such as limbs
or branches, being removed well before we would wish. To avoid
this, we can extend the cell label generated for each vertex prior to
clustering according to the corresponding vertex normal. We clas-
sify this normal according to its sign along each major axis, leading
to eight possible directional tags, which we append to the cell label
before index lookup. (Other normal clustering schemes are possi-
ble, but this is the fastest to calculate, and gives good results.) By
doing so we prevent surface regions that are in opposing directions
from being collapsed together, at the expense of some additional
faces being generated. This has the effect of preserving curved sur-
faces within a cell, as seen on the right side of Figure 5. The impact
to label generation in QuantiseVertices is not major: the vertex
normal must be read in addition to vertex position, but the sign bits
are trivially extracted. Also, although more faces are generated for
heavily curved surfaces, a flat surface passing through a cell is rel-
atively unaffected, as its vertex normals will mostly fall into the
same quadrant.

4.2 Bone Preservation

An issue with applying any simplification technique to an animated
mesh is inappropriate simplification of features that are nearby in
the base pose, but are animated independently, and may be far apart
in other poses. Commonly this leads to webbing between adjacent
features that are collapsed together, as seen in Figure 6.

Figure 5: From left to right: the original model; long, thin features
disappear under simplification; after applying shape preservation.

We can avoid this issue by finding the bones1 influencing each ver-
tex, and appending their indices to the extended cell label in turn.
This has the effect of preventing any triangle that spans two differ-
ent bones from being removed, and thus avoids collapsing together
any two parts of the mesh that move independently. We find it suf-
fices to only use the bone with greatest influence, which is easily
found in a standard animated mesh set up. Typically a set of at
most four bone indices and three bone weights are stored per ver-
tex2, in sorted order, to make it easy to process a subset of weights
for shader LOD purposes. Hence the major bone index for a vertex
is simply aweights[i][0].

Although we do wind up generating additional triangles over the
base algorithm, not all of which are necessary to avoid webbing,
because the bones represent functional parts of the mesh, they can
still help with general visual and animation detail preservation.
Also, the approach composes well with skeleton simplification ap-
proaches. If we have available a reduced skeleton for more distant
LODs, in order to reduce the work the animation system is doing,
the vertex collapse constraints can be similarly relaxed due to the
reduced set of bone indices.

4.3 Simplification Control

The previously described extensions trade face count for quality.
Thus we find it useful to be able to selectively control which are
enabled in certain scenarios. For instance at the farthest LOD, an-
imation may be disabled altogether, removing the need for bone
preservation. Shape preservation may not be needed in all scenar-
ios either, and it would also be desirable to have more fine-grained
control over the simplification amount over different areas of the
mesh.

We can achieve these goals by modifying the cell size used to de-
termine the base cell label, and which extensions to the base cell
label are applied, according to bone groups. We classify bones ac-
cording to functional group (e.g., body, limbs, detail, head), and use

1In this context a bone is an animated transform matrix from the under-
lying mesh skeleton.

2The last weight is implicit as all weights sum to one.

Using the sets
rv0 = dv0 = ea_n[ev[e0]]
rv1 = dv1 = ea_n[ev[e1]]
level = 0

while (setLinks[rv0]) >= 0)
 rv0 = setLinks[rv0]
 level++

while (setLinks[rv1] >= 0)
 rv1 = setLinks[rv1]
 level--

if (rv0 != rv1)
 if (level < 0)
 setLinks[rv0] = rv1
 setLinks[dv0] = rv1
 else
 setLinks[rv1] = rv0
 setLinks[dv1] = rv0

foreach (iv in 3 Nf)
 i = ev[iv]
 dv = ea_n[i]
 rv = dv

 while (setLinks[rv] >= 0)
 rv = setLinks[rv]

 if (setLinks[rv] == -1)
 setLinks[rv] = -2 - dv;

 if (dv != rv)
 ea_n[i] = -2 - next
 setLinks[dv] = next

QuantiseVertices:
 foreach (i in Nv)
 Generate cell label
 Record replacement index ep[i]
 Accumulate p into representative point p_label

RemoveDegenerateTriangles:
 foreach (i in Nf)
 if (p[ep[ev[3i]]] = p[ep[ev[3i + 1]]] = p[ep[ev[3i + 2]]])
 Discard triangle

Compact:
Share all vertices with identical element references
Remove all unindexed data

rv0 = dv0 = ea_n[ev[e0]]
rv1 = dv1 = ea_n[ev[e1]]
level = 0

while (setLinks[rv0]) >= 0)
 rv0 = setLinks[rv0]
 level++

while (setLinks[rv1] >= 0)
 rv1 = setLinks[rv1]
 level--

if (rv0 != rv1)
 if (level < 0)
 setLinks[rv0] = rv1
 setLinks[dv0] = rv1
 else
 setLinks[rv1] = rv0
 setLinks[dv1] = rv0

foreach (iv in 3 Nf)
 i = ev[iv]
 dv = ea_n[i]
 rv = dv

 while (setLinks[rv] >= 0)
 rv = setLinks[rv]

 if (setLinks[rv] == -1)
 setLinks[rv] = -2 - dv;

 if (dv != rv)
 ea_n[i] = -2 - next
 setLinks[dv] = next

QuantiseVertices:
 foreach (i in Nv)
 Generate cell label
 Record replacement index ep[i]
 Accumulate p into representative point p_label

RemoveDegenerateTriangles:
 foreach (i in Nf)
 if (p[ep[ev[3i]]] = p[ep[ev[3i + 1]]] = p[ep[ev[3i + 2]]])
 Discard triangle

Compact:
Share all vertices with identical element references
Remove all unindexed data

The resulting algorithm is shown above. It requires the allocation
of a single additional scratch array, setLinks, of size Nan , with all
values initialised to −1.

The union operation shown on the left is performed for any singly
degenerate triangle detected during the main triangle removal loop,
and the replacement attribute index lookup on the right is run im-
mediately after triangle removal has finished, on the remaining tri-
angles in the mesh. As shown, the replacement algorithm uses a
simple encoding trick to choose the attribute index of the first ver-
tex visited in each set as the representative attribute, but this can be
replaced with code to generate new attribute indices, if it is desired
to generate more accurate representative attributes later.

4 Quality Improvements

Although preserving attribute discontinuities goes a substantial way
towards allowing vertex clustering to be used in a production situa-
tion, there are several other areas in which we found it necessary to
extend the algorithm to address quality issues.

4.1 Shape Preservation

An issue with vertex clustering in particular is that any feature
smaller than the cell size in at least one dimension will be re-
moved. This can lead to thin but elongated features, such as limbs
or branches, being removed well before we would wish. To avoid
this, we can extend the cell label generated for each vertex prior to
clustering according to the corresponding vertex normal. We clas-
sify this normal according to its sign along each major axis, leading
to eight possible directional tags, which we append to the cell label
before index lookup. (Other normal clustering schemes are possi-
ble, but this is the fastest to calculate, and gives good results.) By
doing so we prevent surface regions that are in opposing directions
from being collapsed together, at the expense of some additional
faces being generated. This has the effect of preserving curved sur-
faces within a cell, as seen on the right side of Figure 5. The impact
to label generation in QuantiseVertices is not major: the vertex
normal must be read in addition to vertex position, but the sign bits
are trivially extracted. Also, although more faces are generated for
heavily curved surfaces, a flat surface passing through a cell is rel-
atively unaffected, as its vertex normals will mostly fall into the
same quadrant.

4.2 Bone Preservation

An issue with applying any simplification technique to an animated
mesh is inappropriate simplification of features that are nearby in
the base pose, but are animated independently, and may be far apart
in other poses. Commonly this leads to webbing between adjacent
features that are collapsed together, as seen in Figure 6.

Figure 5: From left to right: the original model; long, thin features
disappear under simplification; after applying shape preservation.

We can avoid this issue by finding the bones1 influencing each ver-
tex, and appending their indices to the extended cell label in turn.
This has the effect of preventing any triangle that spans two differ-
ent bones from being removed, and thus avoids collapsing together
any two parts of the mesh that move independently. We find it suf-
fices to only use the bone with greatest influence, which is easily
found in a standard animated mesh set up. Typically a set of at
most four bone indices and three bone weights are stored per ver-
tex2, in sorted order, to make it easy to process a subset of weights
for shader LOD purposes. Hence the major bone index for a vertex
is simply aweights[i][0].

Although we do wind up generating additional triangles over the
base algorithm, not all of which are necessary to avoid webbing,
because the bones represent functional parts of the mesh, they can
still help with general visual and animation detail preservation.
Also, the approach composes well with skeleton simplification ap-
proaches. If we have available a reduced skeleton for more distant
LODs, in order to reduce the work the animation system is doing,
the vertex collapse constraints can be similarly relaxed due to the
reduced set of bone indices.

4.3 Simplification Control

The previously described extensions trade face count for quality.
Thus we find it useful to be able to selectively control which are
enabled in certain scenarios. For instance at the farthest LOD, an-
imation may be disabled altogether, removing the need for bone
preservation. Shape preservation may not be needed in all scenar-
ios either, and it would also be desirable to have more fine-grained
control over the simplification amount over different areas of the
mesh.

We can achieve these goals by modifying the cell size used to de-
termine the base cell label, and which extensions to the base cell
label are applied, according to bone groups. We classify bones ac-
cording to functional group (e.g., body, limbs, detail, head), and use

1In this context a bone is an animated transform matrix from the under-
lying mesh skeleton.

2The last weight is implicit as all weights sum to one.

Results

Results

• Done!

• But can do more to improve Vertex
Clustering quality

Shape Preservation

• A consequence of vertex clustering:

• Any feature smaller than the cell size in at least
one dimension will disappear completely

• Not always desirable!

• Limbs

• Poles, fences

Disappearing Trunk

Disappearing Trunk

Shape Preservation

Shape Preservation

Thin Features

After Collapse

Insight: Normal Clustering

After Collapse

Cluster Strategy

• Quantize normal 8 ways

• Trivial: assemble x/y/z sign bits

• Cell label now <cell>_<qnorm>

Shape Preservation

Trunks Preserved

Trunks Preserved

Bone Preservation

• Simplifying animated models leads to
problems

• Base pose is not representative of all animated
poses

• May collapse parts of the mesh together that are
animated independently

Webbing

Fixing Unwanted Collapses

• Use same approach as normal clustering

• Append major bone index to the vertex
label

• Prevents any triangle spanning two bones from
being removed

• Avoids cross-limb collapses

• Label: <cell>_<qnorm>_<bone>

• Fast to look up with sorted weights

Result

Simplification Control

• Information from game can help:

• Know which parts of the mesh are animated

• Know which parts are detail and can be heavily
simplified

• Use to affect simplification factor (cell size) and
what extensions to use

• See paper

Label Size

• We’ve been merrily extending the vertex
label, does that hurt us?

• <cell>_<qnorm>_<bone>_<tag>

• Previously: xyz x 32 bits, hash to output
index

• Now: 3 x 24 bits + normal (3 bits) + bone
(8 bits) + tag (5 bits)

• No change to cluster index lookup!

Results

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 10000 20000 30000 40000 50000 60000

Ti
m

e
Ta

ke
n

(m
s)

Output Vertices

Vertex Clustering
Attribute Handling
Attribute + Shape

Attribute + Shape + Bones
D3DX Progressive Mesh / 100

Results

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 20 40 60 80 100 120 140 160 180 200

Ti
m

e
Ta

ke
n

(m
s)

Simplification Factor

Vertex Clustering
Attribute Handling
Attribute + Shape

Attribute + Shape + Bones

Summary

• Vertex Clustering adapted for production
quality meshes

• High speed

• Memory friendly, faster for lower LODs

• Job-friendly, mostly Compute-friendly

• Robust!

• No restrictions on input mesh

Testing!

• There are 160 million1 player-created
models published on
 http://www.spore.com/sporepedia

• Our system has generated 3-4 LODs for all
of them with no issues.

1 165,568,111 @ 9am

http://www.spore.com/sporepedia
http://www.spore.com/sporepedia

Acknowledgements

• Ocean Quigley

• Maxis

• Core Engine Team

• Lucy Bradshaw

• Questions?

Parallelism

• Label assignment is embarrassingly parallel

• Compaction of triangle list = stream
compaction

• Boundary edges work at the cell level

• Ideally suited for SPU

Base VC

rendering purposes on modern hardware. As discussed previously,
it is desirable to avoid high local screen-space triangle densities,
and regulating output vertex spacing by means of a uniform grid
works well for this. Finally, the algorithm is extremely robust to
input. In the next section, we address the issue of extending vertex
clustering to properly handle vertex attributes.

3 Simplification Algorithm

3.1 Vertex Clustering

We consider a multi-attribute mesh as defined in Table 1. It con-
tains at least an array of unique positions, and optionally addi-
tional unique attribute arrays such as normals or texture coordi-
nates. These arrays are supplemented with corresponding arrays
of per-vertex array indices, which can be used to indicate element
sharing between vertices. For instance if vertices i and j have
matching ep[i] and ep[j], they are considered to have the same posi-
tion. They may have differing ean

[i] and ean
[j] however, indicating

the presence of an attribute discontinuity at the vertex. Finally there
is a set of primitive vertex indices that indicate inter-vertex connec-
tivity, and by the same token, vertex sharing. For a triangle list with
Nf triangles, this is an array of Nf index triples.

p[Np] Positions array
an[Nan

] nth attribute array
ep[Nv] Per-vertex position indices array
ean

[Nv] nth per-vertex attribute indices array
ev[3Nf] Per-triangle vertex indices array

Table 1: Basic mesh definition

The base vertex clustering algorithm works by clustering nearby
vertices according to some metric, and then discarding any triangles
that are now degenerate. An outline of the algorithm is:

rv0 = dv0 = ea_n[ev[e0]]
rv1 = dv1 = ea_n[ev[e1]]
level = 0

while (setLinks[rv0]) >= 0)
 rv0 = setLinks[rv0]
 level++

while (setLinks[rv1] >= 0)
 rv1 = setLinks[rv1]
 level--

if (rv0 != rv1)
 if (level < 0)
 setLinks[rv0] = rv1
 setLinks[dv0] = rv1
 else
 setLinks[rv1] = rv0
 setLinks[dv1] = rv0

foreach (iv in 3 Nf)
 i = ev[iv]
 dv = ea_n[i]
 rv = dv

 while (setLinks[rv] >= 0)
 rv = setLinks[rv]

 if (setLinks[rv] == -1)
 setLinks[rv] = -2 - dv;

 if (dv != rv)
 ea_n[i] = -2 - next
 setLinks[dv] = next

QuantiseVertices:
 foreach (i in Nv)
 Generate cell label
 Record replacement index ep[i]
 Accumulate p into representative point p_label

RemoveDegenerateTriangles:
 foreach (i in Nf)
 if (p[ep[ev[3i]]] = p[ep[ev[3i + 1]]] = p[ep[ev[3i + 2]]])
 Discard triangle

Compact:
Share all vertices with identical element references
Remove all unindexed data

A detail is that the label lookup required for the index of the re-
placement point can be handled either by an explicit per-grid-cell
lookup table, or by using a hash map from label to index. The lat-
ter has the advantage that storage is of the order of the number of
output points rather than O(g3), where g is the grid resolution, and
that explicit grid bounds do not need to be calculated. This leads to
it often being termed the virtual grid approach. It also lends itself
to the extended label use we describe in Section 4.

Finally, the GenerateNewVertices routine may be run in parallel to
the remainder of the algorithm, and RemoveDegenerateTriangles
is easily divided into multiple work units with a single post-merge
step.

3.2 Vertex Attributes

The most obvious way to extend this algorithm to support multiple
attributes is for GenerateNewVertices to also generate representa-

tive attributes for each output vertex, either by synthesis or by se-
lecting a particular input vertex to be the representative. The draw-
back to this approach is that any vertex attribute discontinuities in
the input mesh will be removed, as all output vertices must have
a single associated set of attributes. For vertex normal attributes,
the result is that any sharp edges are removed, as can be seen in
Figure 2. Such edges are either smoothed, if normals are properly
averaged, or result in unrepresentative lighting if a particular input
vertex is used, as shown. Even if the result is acceptable at a dis-
tance, there is obvious visual popping when LODs change, as the
eye is quite sensitive to such lighting discontinuities.

A more subtle issue arises with texture coordinates, particularly
when used with the standard approach whereby multiple texture
charts are combined into a single page. Two vertices from differ-
ent charts may be collapsed into one vertex, leading to triangles in
the output mesh that span more than one chart. For these triangles
the uv mapping is ill-defined, and disturbing visual artefacts appear
close to chart boundaries, as in Figure 3. Similar issues occur for
non-convex charts.

Figure 2: Left: original model (normals only). Middle: simple ver-

tex clustering removes all normal discontinuities, leading to edge

smoothing and normals inconsistent with the local surface. Right:

our algorithm preserves these discontinuities.

One can also take the same approach as the progressive mesh algo-
rithm, and associate attributes with face corners. However, in the
case of vertex clustering, although this successfully retains disconti-
nuities, it also leads to all output corners at a vertex having different
attribute indices, which effectively forces all vertices in the output
mesh to be unshared, an untenable result.

3.3 Cell Boundary Edges

The difficulty with attribute preservation under the vertex cluster-
ing model is that we operate per-vertex during the collapse step, so
we do not have local information about the discontinuities we may
want to preserve. Fixing up the attributes as a post process also
seems difficult, because at first glance this requires knowledge of
the set of triangles collapsed into a given representative point, as a
discontinuity may potentially pass through any of the edges in this
set. Tracking this set and searching it for appropriate discontinuity
edges would result in a dependency on input mesh size, and lose
the algorithm’s main speed advantage, namely the ability to discard
large numbers of triangles via linear passes through first the vertices
and then triangles.

We can simplify matters by only considering discontinuities that
pass completely through a cluster cell, as in Figure 4a. This is rea-

Normal Discontinuities

rendering purposes on modern hardware. As discussed previously,
it is desirable to avoid high local screen-space triangle densities,
and regulating output vertex spacing by means of a uniform grid
works well for this. Finally, the algorithm is extremely robust to
input. In the next section, we address the issue of extending vertex
clustering to properly handle vertex attributes.

3 Simplification Algorithm

3.1 Vertex Clustering

We consider a multi-attribute mesh as defined in Table 1. It con-
tains at least an array of unique positions, and optionally addi-
tional unique attribute arrays such as normals or texture coordi-
nates. These arrays are supplemented with corresponding arrays
of per-vertex array indices, which can be used to indicate element
sharing between vertices. For instance if vertices i and j have
matching ep[i] and ep[j], they are considered to have the same posi-
tion. They may have differing ean

[i] and ean
[j] however, indicating

the presence of an attribute discontinuity at the vertex. Finally there
is a set of primitive vertex indices that indicate inter-vertex connec-
tivity, and by the same token, vertex sharing. For a triangle list with
Nf triangles, this is an array of Nf index triples.

p[Np] Positions array
an[Nan

] nth attribute array
ep[Nv] Per-vertex position indices array
ean

[Nv] nth per-vertex attribute indices array
ev[3Nf] Per-triangle vertex indices array

Table 1: Basic mesh definition

The base vertex clustering algorithm works by clustering nearby
vertices according to some metric, and then discarding any triangles
that are now degenerate. An outline of the algorithm is:

rv0 = dv0 = ea_n[ev[e0]]
rv1 = dv1 = ea_n[ev[e1]]
level = 0

while (setLinks[rv0]) >= 0)
 rv0 = setLinks[rv0]
 level++

while (setLinks[rv1] >= 0)
 rv1 = setLinks[rv1]
 level--

if (rv0 != rv1)
 if (level < 0)
 setLinks[rv0] = rv1
 setLinks[dv0] = rv1
 else
 setLinks[rv1] = rv0
 setLinks[dv1] = rv0

foreach (iv in 3 Nf)
 i = ev[iv]
 dv = ea_n[i]
 rv = dv

 while (setLinks[rv] >= 0)
 rv = setLinks[rv]

 if (setLinks[rv] == -1)
 setLinks[rv] = -2 - dv;

 if (dv != rv)
 ea_n[i] = -2 - next
 setLinks[dv] = next

QuantiseVertices:
 foreach (i in Nv)
 Generate cell label
 Record replacement index ep[i]
 Accumulate p into representative point p_label

RemoveDegenerateTriangles:
 foreach (i in Nf)
 if (p[ep[ev[3i]]] = p[ep[ev[3i + 1]]] = p[ep[ev[3i + 2]]])
 Discard triangle

Compact:
Share all vertices with identical element references
Remove all unindexed data

A detail is that the label lookup required for the index of the re-
placement point can be handled either by an explicit per-grid-cell
lookup table, or by using a hash map from label to index. The lat-
ter has the advantage that storage is of the order of the number of
output points rather than O(g3), where g is the grid resolution, and
that explicit grid bounds do not need to be calculated. This leads to
it often being termed the virtual grid approach. It also lends itself
to the extended label use we describe in Section 4.

Finally, the GenerateNewVertices routine may be run in parallel to
the remainder of the algorithm, and RemoveDegenerateTriangles
is easily divided into multiple work units with a single post-merge
step.

3.2 Vertex Attributes

The most obvious way to extend this algorithm to support multiple
attributes is for GenerateNewVertices to also generate representa-

tive attributes for each output vertex, either by synthesis or by se-
lecting a particular input vertex to be the representative. The draw-
back to this approach is that any vertex attribute discontinuities in
the input mesh will be removed, as all output vertices must have
a single associated set of attributes. For vertex normal attributes,
the result is that any sharp edges are removed, as can be seen in
Figure 2. Such edges are either smoothed, if normals are properly
averaged, or result in unrepresentative lighting if a particular input
vertex is used, as shown. Even if the result is acceptable at a dis-
tance, there is obvious visual popping when LODs change, as the
eye is quite sensitive to such lighting discontinuities.

A more subtle issue arises with texture coordinates, particularly
when used with the standard approach whereby multiple texture
charts are combined into a single page. Two vertices from differ-
ent charts may be collapsed into one vertex, leading to triangles in
the output mesh that span more than one chart. For these triangles
the uv mapping is ill-defined, and disturbing visual artefacts appear
close to chart boundaries, as in Figure 3. Similar issues occur for
non-convex charts.

Figure 2: Left: original model (normals only). Middle: simple ver-

tex clustering removes all normal discontinuities, leading to edge

smoothing and normals inconsistent with the local surface. Right:

our algorithm preserves these discontinuities.

One can also take the same approach as the progressive mesh algo-
rithm, and associate attributes with face corners. However, in the
case of vertex clustering, although this successfully retains disconti-
nuities, it also leads to all output corners at a vertex having different
attribute indices, which effectively forces all vertices in the output
mesh to be unshared, an untenable result.

3.3 Cell Boundary Edges

The difficulty with attribute preservation under the vertex cluster-
ing model is that we operate per-vertex during the collapse step, so
we do not have local information about the discontinuities we may
want to preserve. Fixing up the attributes as a post process also
seems difficult, because at first glance this requires knowledge of
the set of triangles collapsed into a given representative point, as a
discontinuity may potentially pass through any of the edges in this
set. Tracking this set and searching it for appropriate discontinuity
edges would result in a dependency on input mesh size, and lose
the algorithm’s main speed advantage, namely the ability to discard
large numbers of triangles via linear passes through first the vertices
and then triangles.

We can simplify matters by only considering discontinuities that
pass completely through a cluster cell, as in Figure 4a. This is rea-

rendering purposes on modern hardware. As discussed previously,
it is desirable to avoid high local screen-space triangle densities,
and regulating output vertex spacing by means of a uniform grid
works well for this. Finally, the algorithm is extremely robust to
input. In the next section, we address the issue of extending vertex
clustering to properly handle vertex attributes.

3 Simplification Algorithm

3.1 Vertex Clustering

We consider a multi-attribute mesh as defined in Table 1. It con-
tains at least an array of unique positions, and optionally addi-
tional unique attribute arrays such as normals or texture coordi-
nates. These arrays are supplemented with corresponding arrays
of per-vertex array indices, which can be used to indicate element
sharing between vertices. For instance if vertices i and j have
matching ep[i] and ep[j], they are considered to have the same posi-
tion. They may have differing ean

[i] and ean
[j] however, indicating

the presence of an attribute discontinuity at the vertex. Finally there
is a set of primitive vertex indices that indicate inter-vertex connec-
tivity, and by the same token, vertex sharing. For a triangle list with
Nf triangles, this is an array of Nf index triples.

p[Np] Positions array
an[Nan

] nth attribute array
ep[Nv] Per-vertex position indices array
ean

[Nv] nth per-vertex attribute indices array
ev[3Nf] Per-triangle vertex indices array

Table 1: Basic mesh definition

The base vertex clustering algorithm works by clustering nearby
vertices according to some metric, and then discarding any triangles
that are now degenerate. An outline of the algorithm is:

rv0 = dv0 = ea_n[ev[e0]]
rv1 = dv1 = ea_n[ev[e1]]
level = 0

while (setLinks[rv0]) >= 0)
 rv0 = setLinks[rv0]
 level++

while (setLinks[rv1] >= 0)
 rv1 = setLinks[rv1]
 level--

if (rv0 != rv1)
 if (level < 0)
 setLinks[rv0] = rv1
 setLinks[dv0] = rv1
 else
 setLinks[rv1] = rv0
 setLinks[dv1] = rv0

foreach (iv in 3 Nf)
 i = ev[iv]
 dv = ea_n[i]
 rv = dv

 while (setLinks[rv] >= 0)
 rv = setLinks[rv]

 if (setLinks[rv] == -1)
 setLinks[rv] = -2 - dv;

 if (dv != rv)
 ea_n[i] = -2 - next
 setLinks[dv] = next

QuantiseVertices:
 foreach (i in Nv)
 Generate cell label
 Record replacement index ep[i]
 Accumulate p into representative point p_label

RemoveDegenerateTriangles:
 foreach (i in Nf)
 if (p[ep[ev[3i]]] = p[ep[ev[3i + 1]]] = p[ep[ev[3i + 2]]])
 Discard triangle

Compact:
Share all vertices with identical element references
Remove all unindexed data

A detail is that the label lookup required for the index of the re-
placement point can be handled either by an explicit per-grid-cell
lookup table, or by using a hash map from label to index. The lat-
ter has the advantage that storage is of the order of the number of
output points rather than O(g3), where g is the grid resolution, and
that explicit grid bounds do not need to be calculated. This leads to
it often being termed the virtual grid approach. It also lends itself
to the extended label use we describe in Section 4.

Finally, the GenerateNewVertices routine may be run in parallel to
the remainder of the algorithm, and RemoveDegenerateTriangles
is easily divided into multiple work units with a single post-merge
step.

3.2 Vertex Attributes

The most obvious way to extend this algorithm to support multiple
attributes is for GenerateNewVertices to also generate representa-

tive attributes for each output vertex, either by synthesis or by se-
lecting a particular input vertex to be the representative. The draw-
back to this approach is that any vertex attribute discontinuities in
the input mesh will be removed, as all output vertices must have
a single associated set of attributes. For vertex normal attributes,
the result is that any sharp edges are removed, as can be seen in
Figure 2. Such edges are either smoothed, if normals are properly
averaged, or result in unrepresentative lighting if a particular input
vertex is used, as shown. Even if the result is acceptable at a dis-
tance, there is obvious visual popping when LODs change, as the
eye is quite sensitive to such lighting discontinuities.

A more subtle issue arises with texture coordinates, particularly
when used with the standard approach whereby multiple texture
charts are combined into a single page. Two vertices from differ-
ent charts may be collapsed into one vertex, leading to triangles in
the output mesh that span more than one chart. For these triangles
the uv mapping is ill-defined, and disturbing visual artefacts appear
close to chart boundaries, as in Figure 3. Similar issues occur for
non-convex charts.

Figure 2: Left: original model (normals only). Middle: simple ver-

tex clustering removes all normal discontinuities, leading to edge

smoothing and normals inconsistent with the local surface. Right:

our algorithm preserves these discontinuities.

One can also take the same approach as the progressive mesh algo-
rithm, and associate attributes with face corners. However, in the
case of vertex clustering, although this successfully retains disconti-
nuities, it also leads to all output corners at a vertex having different
attribute indices, which effectively forces all vertices in the output
mesh to be unshared, an untenable result.

3.3 Cell Boundary Edges

The difficulty with attribute preservation under the vertex cluster-
ing model is that we operate per-vertex during the collapse step, so
we do not have local information about the discontinuities we may
want to preserve. Fixing up the attributes as a post process also
seems difficult, because at first glance this requires knowledge of
the set of triangles collapsed into a given representative point, as a
discontinuity may potentially pass through any of the edges in this
set. Tracking this set and searching it for appropriate discontinuity
edges would result in a dependency on input mesh size, and lose
the algorithm’s main speed advantage, namely the ability to discard
large numbers of triangles via linear passes through first the vertices
and then triangles.

We can simplify matters by only considering discontinuities that
pass completely through a cluster cell, as in Figure 4a. This is rea-

