
FASTTRIANGLEPAIRING FORRAYTRACING
Aytek Aman & Simon Fenney Imagination Technologies

Introduction

We propose a fast and efficient triangle pairing algorithm to increase the utilisation of ray tracers

that test triangles in pairs. This method globally reorders the triangles in a way that the number

of pairs is maximized while keeping the AABBs of these pairs as small as possible.

• This increases the utilization of a dual triangle testing unit

•Reduces the memory footprint of the acceleration structure

•Reduces the number of box and triangle tests

Triangle Pairer

Background

At least two hardware ray tracing systems, Intel’s[2] and Imagination’s, store and/or test rays

against triangle pairs. Testing triangles in pairs has considerable advantages[1]:

1. BVHs tend to useAABBs. TheAABB for a contiguous pair of triangles is rarely much larger

than either of the two AABBs of the constituent triangles. Treating them as a pair will thus

usually reduce BVH footprint, traversal depth, and AABB testing effort.

2. It reduces the number of false hits, where ray hits the bounding box but not the triangles.

3. When performing the ray triangle pair tests, the maths relating to the common edge can

be shared in the evaluation.

4. A triangle pair is more compact than 2 individual triangles, which can save memory band-

width and increase cache utilisation.

Some ray tracing systems rely on well ordered triangles to form pairs. Usually, a window of size

N is considered during the scan of the triangles, and best partner for a given triangle needs to be

selected from that window. However, this approach does not always give good results:

1. A pair may not always be located in the search window.

2. For small to moderate N, the located pair candidate may not be the best candidate for

pairing. It can increase a leaf bounding box size unnecesarily and may prevent a better

pairing to be made.

3. There are also cases wheremeshes are 100% paired (e.g. a quad basedmesh). However,

if such mesh has certain characteristics (a 45 degree rotated model where the rotation is

pre-baked into the vertices), original pairings can lead to suboptimal BVH performance.

To solve these issues, we propose a more comprehensive approach, where more pairings are

considered by using a surface area heuristic based on shared edge bounding boxes.

EdgeBBoxSurfaceAreaHeuristic

The Triangle pairing algorithm aims to pair triangles on shared edges where the surface area of

the bounding box of the shared edges are maximized in a greedy manner. This algorithm does

not consider the bounding boxes of the triangles and only uses the shared edge data to improve

the runtime. Experiments show that this has negligible effect on the quality of the pairings.

Left: The bounding box of each triangle. Middle: Combined bounding box of the triangle pair. Right: The bounding

box of the shared edge.

This heuristic simultaneously prioritizes the pairing of triangles with these features:

1. Triangles where shared edge is “diagonal”: Having a diagonal shared edge (relative to the

primary axes) increases the chance that the combined bounding box of the triangles will be

compact.

2. Triangles with larger area: Larger triangles will be paired first to minimize their negative im-

pact on ray tracing performance.

Furthermore, this heuristic can be computed in a trivial manner using the coordinates of an edge.

It does not rely on locating the neighboring triangle on the given shared edge.

Our method has four main stages.

1. Halfedge table construction

2. Edge key compression [Optional]

3. Halfedge table sorting

4. Greedy pairing

Given a triangle mesh with 6 vertices and 5 triangles, triangle pairing method will work as follows.

3

3

4
0

1

2

0
1

54

2

Halfedgetableconstruction

The half-edge table is constructed, containing each half-edge in the mesh. Each half-edge record

contains

•BBox Surface Area (BBSA): Surface area of the axis-aligned bounding box of the half-edge

• First Vertex Index: Smaller vertex index of the edge

• Second Vertex Index: Larger vertex index of the edge

• Triangle Index: Index of the triangle that the edge belongs to

Resulting halfedge table where each column is an halfedge. (Color indicates the parent triangle)

BBox Surface Area 0 15 20 10 10 15 0 30 10 18 9 30 20 20 9

First Vertex Index 0 1 0 1 2 1 4 2 2 3 2 2 0 0 2

Second Vertex Index 1 2 2 5 5 2 5 4 5 4 3 4 3 2 3

Triangle Index 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4

EdgeKeyRepresentation&Compression

In a ray tracing pipeline, vertex indices may not be available in all stages. Our method supports

the use of vertex coordinates directly in such cases. This naturally leads to a larger half-edge ta-

ble. However, it is possible to compress the half-edge data. For compact representation, we use

the midpoint of the edge. Also, both BBSA and edge midpoint coordinates could be converted to

a 24 bit representation. As a result, a halfedge entry becomes a 16 byte structure in total.

BBSA V0X V0Y V0Z V1X V1Y V1Z
Tri

Index

BBSA MX MY MZ
Tri

Index

Using midpoint instead of 
start and end points

32 bytes

20 bytes

BBSA MX MY MZ
Tri

Index

16 bytes

32 to 24 bits compression 
of floats

Halfedgetablesorting

The half-edge table is sorted lexicographically using keys [BBox Surface Area, First Vertex

Index, Second Vertex Index]. After sorting:

• Half-edges will be ordered based on their BBox Surface Area.

• Twin half-edges will be next to each other since their vertex indices are in a canonical form,

i.e., First Vertex Index < Second Vertex Index for all half-edges.

• Axis aligned half-edges will be at the end of the table as their BBox Surface Area is zero.

BBox Surface Area 30 30 20 20 20 18 15 15 10 10 10 9 9 0 0

First Vertex Index 2 2 0 0 0 3 1 1 2 2 1 2 2 4 0

Second Vertex Index 4 4 3 2 2 4 2 2 5 5 5 3 3 5 1

Triangle Index 2 3 4 0 4 3 0 1 1 2 1 3 4 2 0

Greedypairing

A linear scan is performed to identify triangle pairs. If keys of two halfedges are identical (which

means that they are halfedge-twins), we check to see whether incident triangles are paired al-

ready. If not, we mark these two triangles as a pair.

BBox Surface Area 30 30 20 20 20 18 15 15 10 10 10 9 9 0 0

First Vertex Index 2 2 0 0 0 3 1 1 2 2 1 2 2 4 0

Second Vertex Index 4 4 3 2 2 4 2 2 5 5 5 3 3 5 1

Triangle Index 2 3 4 0 4 3 0 1 1 2 1 3 4 2 0

Pairing Status Accept Accept Reject Reject Reject

Results

We evaluated the performance of our CPU based implementation on different scenes. We report

time, paired triangle ratio before (where search window size N = 2) and after optimisation, box and

triangle test counts and finally million rays per second (MRPS) that is measured on a hardware

ray tracing simulator.

Scene
Time

(sec)

Old

#pairs (%)

New

#pairs (%)

∆Box
Tests (%)

∆Tri
Tests (%)

∆MRPS

(%)

bistro 0.077 92.76 94.09 -0.41 -0.76 -0.54

bmw 0.003 99.61 99.78 0.24 -0.44 -4.99

buddha 0.147 55.37 89.70 -3.85 -21.26 20.88

buddha_quad - 100.00 100.00 0 0 0

bunny 0.009 65.69 97.30 -12.4 -34.36 11.94

cloudgate 0.024 90.66 94.42 -0.51 -1.03 2.29

cloudgate_ship_only 0.122 92.58 93.72 -1.72 -5.00 -0.03

conference 0.032 98.69 95.34 -1.73 -9.56 11.06

dmdeck 0.093 92.35 94.30 -8.27 -9.82 11.02

dragon 0.134 56.52 89.64 -3.49 -19.76 17.62

dungeon 0.009 80.92 96.36 -5.93 -18.72 7.32

epiccitadel 0.017 93.66 93.27 -10.8 -17.10 11.06

examplemap 0.015 92.34 94.49 -2.32 -10.00 3.98

expedition 0.045 56.89 91.07 -3.42 -14.05 2.88

gallery 0.050 89.73 96.06 4.02 -6.77 4.46

hairball - 100.00 100.00 0 0 0

hangar 0.034 85.83 93.83 -2.51 -13.83 9.26

pagoda 0.011 85.98 92.80 3.67 -8.50 4.43

pipes 0.022 85.49 94.92 -1.90 -5.04 5.57

prefabs 0.041 84.18 89.06 -4.09 -23.28 15.96

relicoflife 0.139 90.89 94.95 -0.94 -4.72 -0.15

rungholt - 100.00 100.00 0 0 0

sanmiguel 0.178 85.15 92.21 -7.48 -16.72 12.28

scifi 0.015 84.16 92.17 -14.4 -30.88 2.90

sibenik 0.010 95.93 95.78 -2.72 -3.96 4.81

sponza 0.006 97.72 97.93 -0.19 -3.92 -0.03

stylised 0.005 89.40 94.83 -8.47 -21.01 17.87

toys 0.009 89.43 96.11 -7.86 -21.64 21.55

village 0.005 83.81 88.93 -7.41 -19.93 22.65

Note that our pairer performs a pre-scan to decide if pairing optimisation is needed. In scenes

buddha_quad, hairball, rungholt the input data is already well-paired, thus pairer has not been run on

these scenes. On average, we observed 7-8 % increase in ray tracing performance.

Conclusion

High quality triangle pairs can increase ray tracing performance. For models with low quality & few

pairs, our method can significantly increase the number of good pairings. This, in turn, increases

the ray tracing performance while reducing the memory used by the acceleration structure as

well as time spent to build that structure. This method is based on a simple scheme that relies

on sorting, which can be further accelerated on the GPU by using radix or bitonic sort.

References

[1] Simon Fenney and Alper Ozkan. Compressed opacity maps for ray tracing. High Performance

Graphics, 2022.

[2] Gruen Holger and Joshua Barzack. A quick guide to intel’s ray tracing architecture. GDC, 2022.

1


