
Efficient Stackless Hierarchy Traversal
with Backtracking in Constant Time
Nikolaus Binder and Alexander Keller, June, 2016

Efficient Hierarchy Traversal
Pruning/postponing nodes and backtracking

1

32

5

1110

4

9

19

3938

7776

18

8

1

2 3

1

Efficient Hierarchy Traversal
Pruning/postponing nodes and backtracking

1

32

5

1110

4

9

19

3938

7776

18

8

1

2 3

4 5

2

postponed nodes

3

Efficient Hierarchy Traversal
Pruning/postponing nodes and backtracking

1

32

5

1110

4

9

19

3938

7776

18

8

1

2 3

4 5

8 9

4

postponed nodes

3

5

Efficient Hierarchy Traversal
Pruning/postponing nodes and backtracking

1

32

5

1110

4

9

19

3938

7776

18

8

1

2 3

4 5

8 9

18 19

9

postponed nodes

3

5

Efficient Hierarchy Traversal
Pruning/postponing nodes and backtracking

1

32

5

1110

4

9

19

3938

7776

18

8

1

2 3

4 5

8 9

18 19

38 39

19

postponed nodes

3

5

Efficient Hierarchy Traversal
Pruning/postponing nodes and backtracking

1

32

5

1110

4

9

19

3938

7776

18

8

1

2 3

4 5

8 9

18 19

38 39

76 77

38

postponed nodes

3

5

Efficient Hierarchy Traversal
Pruning/postponing nodes and backtracking

1

32

5

1110

4

9

19

3938

7776

18

8

1

2 3

4 5

8 9

18 19

38 39

76 77

38

postponed nodes

3

55

Efficient Hierarchy Traversal
Comparing previous backtracking strategies

1

32

5

1110

4

9

19

3938

7776

18

8

1

2 3

4 5

8 9

18 19

38 39

76 77

Stack

addr(3)

addr(5)

Efficient Hierarchy Traversal
Comparing previous backtracking strategies

1

32

5

1110

4

9

19

3938

7776

18

8

1

2 3

4 5

8 9

18 19

38 39

76 77

Bit TrailStack

addr(3)

addr(5) 1

1

0

0

0

Efficient Hierarchy Traversal
Comparing previous backtracking strategies

1

32

5

1110

4

9

19

3938

7776

18

8

1

2 3

4 5

8 9

18 19

38 39

76 77

Bit TrailStack

addr(3)

addr(5) 1

1

0

0

0

0

Efficient Hierarchy Traversal
Comparing previous backtracking strategies

1

32

5

1110

4

9

19

3938

7776

18

8

1

2 3

4 5

8 9

18 19

38 39

76 77

Bit TrailBit TrailStack

addr(3)

addr(5) 1

1

0

0

0

0

1

1

0

0

0

0

Efficient Hierarchy Traversal
Comparing previous backtracking strategies

Stack
Stackless,

Backtracking
from root

Stackless,
Backtracking

with parents/siblings

state for book keeping (per ray) O(h(tree)) O(1) O(1)

backtracking effort O(1) O(h(tree)) O(h(tree))

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 1: Using a bit trail, go to nth uncle in constant time

1

32

5

1110

4

9

19

3938

7776

18

8

1

2 3

4 5

8 9

18 19

38 39

76 77

Bit Trail Cur Key

1

1

0

0

0

1

0

0

1

1

0

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 1: Using a bit trail, go to nth uncle in constant time

1

32

5

1110

4

9

19

3938

7776

18

8

1

2 3

4 5

8 9

18 19

38 39

76 77

Bit Trail Cur Key

1

1

0

0

0

1

0

0

1

1

0

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 1: Using a bit trail, go to nth uncle in constant time

1

32

5

1110

4

9

19

3938

7776

18

8

1

2 3

4 5

8 9

18 19

38 39

76 77

Bit Trail Cur Key

1

1

1

0

00 1

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 1: Using a bit trail, go to nth uncle in constant time

1

32

5

1110

4

9

19

3938

7776

18

8

1

2 3

4 5

8 9

18 19

38 39

76 77

Bit Trail Cur Key

1

0

1

0

1

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 1: Using a bit trail, go to nth uncle in constant time

Perfect Hash Map h: node key k 7! node address addr(k)

⌅ properties
– no collisions

– no need to store keys

– lookup in constant time

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 2: Two level hashing using an additional displacement table D

k 7! (k mod |T |+D[k mod |D|]) mod |T | [Tarjan, Yao 1979]

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 2: Two level hashing using an additional displacement table D

k 7! (k mod |T |+D[k mod |D|]) mod |T | [Tarjan, Yao 1979]

1

2

3

4

5

8

9

18

19

38

39

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

3

3

4

4

4

4

4

4 5

5

5

E

5

5

5

5

8

8

8

8

8

8

9

9

9

9

9

9

18

18

18

18

18

18

19

19

19

19

19

19

38

38

38

38

38

38

39

39

39

39

39

39

k mod |T|

k
m

od
|D
|

S = {1,2,3,4,5,8,9,18,19,38,39}

|S|= 11

|T |= 11 = |S|) minimal perfect hash table

|D|= 8

D

T

+0

+0

+0

+0

+0

+0

+0

+0

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 2: Two level hashing using an additional displacement table D

k 7! (k mod |T |+D[k mod |D|]) mod |T | [Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]

1

2

3

4

5

8

9

18

19

38

39

k mod |T|

k
m

od
|D
|

S = {1,2,3,4,5,8,9,18,19,38,39}

|S|= 11

|T |= 11 = |S|) minimal perfect hash table

|D|= 8

#

1

2

2

2

1

1

1

1

D

T

+0

+0

+0

+0

+0

+0

+0

+0

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 2: Two level hashing using an additional displacement table D

k 7! (k mod |T |+D[k mod |D|]) mod |T | [Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]

1

2

3

4

5

8

9

18

19

38

39

1

1

1

1

1

1

9

9

9

9

9

9

k mod |T|

k
m

od
|D
|

S = {1,2,3,4,5,8,9,18,19,38,39}

|S|= 11

|T |= 11 = |S|) minimal perfect hash table

|D|= 8

#

1

2

2

2

1

1

1

1

D

T

+0

+0

+0

+0

+0

+0

+0

+0

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 2: Two level hashing using an additional displacement table D

k 7! (k mod |T |+D[k mod |D|]) mod |T | [Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]

1

2

3

4

5

8

9

18

19

38

39

1

1

1

1

1

1

2

2

2

2

2

2

9

9

9

9

9

9

18

18

18

18

18

18

k mod |T|

k
m

od
|D
|

S = {1,2,3,4,5,8,9,18,19,38,39}

|S|= 11

|T |= 11 = |S|) minimal perfect hash table

|D|= 8

#

1

2

2

2

1

1

1

1

D

T

+0

+0

+0

+0

+0

+0

+0

+0

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 2: Two level hashing using an additional displacement table D

k 7! (k mod |T |+D[k mod |D|]) mod |T | [Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]

1

2

3

4

5

8

9

18

19

38

39

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

3

3

9

9

9

9

9

9

18

18

18

18

18

18

19

19

19

19

19

19

k mod |T|

k
m

od
|D
|

S = {1,2,3,4,5,8,9,18,19,38,39}

|S|= 11

|T |= 11 = |S|) minimal perfect hash table

|D|= 8

#

1

2

2

2

1

1

1

1

D

T

+0

+0

+0

+0

+0

+0

+0

+0

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 2: Two level hashing using an additional displacement table D

k 7! (k mod |T |+D[k mod |D|]) mod |T | [Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]

1

2

3

4

5

8

9

18

19

38

39

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

3

3

8

88

E

8

8

9

9

9

9

9

9

18

18

18

18

18

18

19

19

19

19

19

19

k mod |T|

k
m

od
|D
|

S = {1,2,3,4,5,8,9,18,19,38,39}

|S|= 11

|T |= 11 = |S|) minimal perfect hash table

|D|= 8

#

1

2

2

2

1

1

1

1

D

T

+0

+0

+0

+0

+0

+0

+0

+0

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 2: Two level hashing using an additional displacement table D

k 7! (k mod |T |+D[k mod |D|]) mod |T | [Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]

1

2

3

4

5

8

9

18

19

38

39

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

3

3

8

88

E

8

8

9

9

9

9

9

9

18

18

18

18

18

18

19

19

19

19

19

19

k mod |T|

k
m

od
|D
|

S = {1,2,3,4,5,8,9,18,19,38,39}

|S|= 11

|T |= 11 = |S|) minimal perfect hash table

|D|= 8

#

1

2

2

2

1

1

1

1

D

T

+1

+0

+0

+0

+0

+0

+0

+0

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 2: Two level hashing using an additional displacement table D

k 7! (k mod |T |+D[k mod |D|]) mod |T | [Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]

1

2

3

4

5

8

9

18

19

38

39

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

3

3

8

8

8

8

8

8

9

9

9

9

9

9

18

18

18

18

18

18

19

19

19

19

19

19

k mod |T|

k
m

od
|D
|

S = {1,2,3,4,5,8,9,18,19,38,39}

|S|= 11

|T |= 11 = |S|) minimal perfect hash table

|D|= 8

#

1

2

2

2

1

1

1

1

D

T

+2

+0

+0

+0

+0

+0

+0

+0

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 2: Two level hashing using an additional displacement table D

k 7! (k mod |T |+D[k mod |D|]) mod |T | [Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]

1

2

3

4

5

8

9

18

19

38

39

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

3

3

4

4

4

4

4

4

8

8

8

8

8

8

9

9

9

9

9

9

18

18

18

18

18

18

19

19

19

19

19

19

k mod |T|

k
m

od
|D
|

S = {1,2,3,4,5,8,9,18,19,38,39}

|S|= 11

|T |= 11 = |S|) minimal perfect hash table

|D|= 8

#

1

2

2

2

1

1

1

1

D

T

+2

+0

+0

+0

+0

+0

+0

+0

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 2: Two level hashing using an additional displacement table D

k 7! (k mod |T |+D[k mod |D|]) mod |T | [Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]

1

2

3

4

5

8

9

18

19

38

39

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

3

3

4

4

4

4

4

4 5

5

5

5

5

5

5

8

8

8

8

8

8

9

9

9

9

9

9

18

18

18

18

18

18

19

19

19

19

19

19

k mod |T|

k
m

od
|D
|

S = {1,2,3,4,5,8,9,18,19,38,39}

|S|= 11

|T |= 11 = |S|) minimal perfect hash table

|D|= 8

#

1

2

2

2

1

1

1

1

D

T

+2

+0

+0

+0

+0

+0

+0

+0

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 2: Two level hashing using an additional displacement table D

k 7! (k mod |T |+D[k mod |D|]) mod |T | [Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]

1

2

3

4

5

8

9

18

19

38

39

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

3

3

4

4

4

4

4

4 5

5

5

5

5

5

5

8

8

8

8

8

8

9

9

9

9

9

9

18

18

18

18

18

18

19

19

19

19

19

19

38

38

38

3838

E

5

k mod |T|

k
m

od
|D
|

S = {1,2,3,4,5,8,9,18,19,38,39}

|S|= 11

|T |= 11 = |S|) minimal perfect hash table

|D|= 8

#

1

2

2

2

1

1

1

1

D

T

+2

+0

+0

+0

+0

+0

+0

+0

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 2: Two level hashing using an additional displacement table D

k 7! (k mod |T |+D[k mod |D|]) mod |T | [Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]

1

2

3

4

5

8

9

18

19

38

39

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

3

3

4

4

4

4

4

4 5

5

5

5

5

5

5

8

8

8

8

8

8

9

9

9

9

9

9

18

18

18

18

18

18

19

19

19

19

19

19

38

38

38

38

38

38

k mod |T|

k
m

od
|D
|

S = {1,2,3,4,5,8,9,18,19,38,39}

|S|= 11

|T |= 11 = |S|) minimal perfect hash table

|D|= 8

#

1

2

2

2

1

1

1

1

D

T

+2

+0

+0

+0

+0

+0

+1

+0

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 2: Two level hashing using an additional displacement table D

k 7! (k mod |T |+D[k mod |D|]) mod |T | [Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]

1

2

3

4

5

8

9

18

19

38

39

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

3

3

4

4

4

4

4

4 5

5

5

5

5

5

5

8

8

8

8

8

8

9

9

9

9

9

9

18

18

18

18

18

18

19

19

19

19

19

19

38

38

38

38

38

38

39

39

39

39

39

3939

E

38

k mod |T|

k
m

od
|D
|

S = {1,2,3,4,5,8,9,18,19,38,39}

|S|= 11

|T |= 11 = |S|) minimal perfect hash table

|D|= 8

#

1

2

2

2

1

1

1

1

D

T

+2

+0

+0

+0

+0

+0

+1

+0

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 2: Two level hashing using an additional displacement table D

k 7! (k mod |T |+D[k mod |D|]) mod |T | [Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]

1

2

3

4

5

8

9

18

19

38

39

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

3

3

4

4

4

4

4

4 5

5

5

5

5

5

5

8

8

8

8

8

8

9

9

9

9

9

9

18

18

18

18

18

18

19

19

19

19

19

19

38

38

38

38

38

38

39

39

39

39

39

3939

E

18

k mod |T|

k
m

od
|D
|

S = {1,2,3,4,5,8,9,18,19,38,39}

|S|= 11

|T |= 11 = |S|) minimal perfect hash table

|D|= 8

#

1

2

2

2

1

1

1

1

D

T

+2

+0

+0

+0

+0

+0

+1

+1

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 2: Two level hashing using an additional displacement table D

k 7! (k mod |T |+D[k mod |D|]) mod |T | [Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]

1

2

3

4

5

8

9

18

19

38

39

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

3

3

4

4

4

4

4

4 5

5

5

5

5

5

5

8

8

8

8

8

8

9

9

9

9

9

9

18

18

18

18

18

18

19

19

19

19

19

19

38

38

38

38

38

38

39

39

39

39

39

3939

E

19

k mod |T|

k
m

od
|D
|

S = {1,2,3,4,5,8,9,18,19,38,39}

|S|= 11

|T |= 11 = |S|) minimal perfect hash table

|D|= 8

#

1

2

2

2

1

1

1

1

D

T

+2

+0

+0

+0

+0

+0

+1

+2

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 2: Two level hashing using an additional displacement table D

k 7! (k mod |T |+D[k mod |D|]) mod |T | [Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]

1

2

3

4

5

8

9

18

19

38

39

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

3

3

4

4

4

4

4

4 5

5

5

5

5

5

5

8

8

8

8

8

8

9

9

9

9

9

9

18

18

18

18

18

18

19

19

19

19

19

19

38

38

38

38

38

38

39

39

39

39

39

3939

E

9

k mod |T|

k
m

od
|D
|

S = {1,2,3,4,5,8,9,18,19,38,39}

|S|= 11

|T |= 11 = |S|) minimal perfect hash table

|D|= 8

#

1

2

2

2

1

1

1

1

D

T

+2

+0

+0

+0

+0

+0

+1

+3

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 2: Two level hashing using an additional displacement table D

k 7! (k mod |T |+D[k mod |D|]) mod |T | [Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]

1

2

3

4

5

8

9

18

19

38

39

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

3

3

4

4

4

4

4

4 5

5

5

5

5

5

5

8

8

8

8

8

8

9

9

9

9

9

9

18

18

18

18

18

18

19

19

19

19

19

19

38

38

38

38

38

38

39

39

39

39

39

3939

E

8

k mod |T|

k
m

od
|D
|

S = {1,2,3,4,5,8,9,18,19,38,39}

|S|= 11

|T |= 11 = |S|) minimal perfect hash table

|D|= 8

#

1

2

2

2

1

1

1

1

D

T

+2

+0

+0

+0

+0

+0

+1

+4

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 2: Two level hashing using an additional displacement table D

k 7! (k mod |T |+D[k mod |D|]) mod |T | [Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]

1

2

3

4

5

8

9

18

19

38

39

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

3

3

4

4

4

4

4

4 5

5

5

5

5

5

5

8

8

8

8

8

8

9

9

9

9

9

9

18

18

18

18

18

18

19

19

19

19

19

19

38

38

38

38

38

38

39

39

39

39

39

39 39

mod 11

k mod |T|

k
m

od
|D
|

S = {1,2,3,4,5,8,9,18,19,38,39}

|S|= 11

|T |= 11 = |S|) minimal perfect hash table

|D|= 8

#

1

2

2

2

1

1

1

1

D

T

+2

+0

+0

+0

+0

+0

+1

+5

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 3: Reducing the number of hash lookups

⌅ backtracking statistics
– to sibling: 27%

– to uncle: 15%

– to grand uncle: 15%

⌅ store references to uncle and grand uncle in node
– in unused padding space

– data loaded anyway

⌅ store most recently postponed node in a register
– always used for transitions to siblings

– similar to a short stack, but more powerful

around 57% alltogether

sibling

uncle

grand uncle

grand

2
uncle

grand

3
uncle

grand

4
uncle

grand

5
uncle

grand

6
uncle

grand

7
uncle

grand

8
uncle

grand

9
uncle

grand

10
uncle

grand

11
uncle

grand

12
uncle

grand

13
uncle

grand

14
uncle

grand

15
uncle

grand

16
uncle

grand

17
uncle

grand

18
uncle

grand

19
uncle

grand

20
uncle

0

27%15% 42% 57% 68% 77% 84% · · · 100%

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 3: Reducing the number of hash lookups

⌅ backtracking statistics
– to sibling: 27%

– to uncle: 15%

– to grand uncle: 15%

⌅ store references to uncle and grand uncle in node
– in unused padding space

– data loaded anyway

⌅ store most recently postponed node in a register
– always used for transitions to siblings

– similar to a short stack, but more powerful

around 57% alltogether

sibling

uncle

grand uncle

grand

2
uncle

grand

3
uncle

grand

4
uncle

grand

5
uncle

grand

6
uncle

grand

7
uncle

grand

8
uncle

grand

9
uncle

grand

10
uncle

grand

11
uncle

grand

12
uncle

grand

13
uncle

grand

14
uncle

grand

15
uncle

grand

16
uncle

grand

17
uncle

grand

18
uncle

grand

19
uncle

grand

20
uncle

0

27%15% 42% 57% 68% 77% 84% · · · 100%

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 3: Reducing the number of hash lookups

⌅ backtracking statistics
– to sibling: 27%

– to uncle: 15%

– to grand uncle: 15%

⌅ store references to uncle and grand uncle in node
– in unused padding space

– data loaded anyway

⌅ store most recently postponed node in a register
– always used for transitions to siblings

– similar to a short stack, but more powerful

around 57% alltogether

sibling

uncle

grand uncle

grand

2
uncle

grand

3
uncle

grand

4
uncle

grand

5
uncle

grand

6
uncle

grand

7
uncle

grand

8
uncle

grand

9
uncle

grand

10
uncle

grand

11
uncle

grand

12
uncle

grand

13
uncle

grand

14
uncle

grand

15
uncle

grand

16
uncle

grand

17
uncle

grand

18
uncle

grand

19
uncle

grand

20
uncle

0

27%15% 42% 57% 68% 77% 84% · · · 100%

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 4: Avoid pointless backtracking

⌅ subtrees behind intersection may not always be culled
– due to overlapping bounding boxes

⌅ discard levels with disjoint t-intervals

– cheap
⇧ no t0 values stored

⇧ mask with one bit per level

⇧ bit set to one if overlapping, zero if disjoint

⇧ bitwise and with bit trail after intersection has been found

– compromise
⇧ cannot account for intersections outside overlap

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 4: Avoid pointless backtracking

⌅ subtrees behind intersection may not always be culled
– due to overlapping bounding boxes

⌅ discard levels with disjoint t-intervals

– cheap
⇧ no t0 values stored

⇧ mask with one bit per level

⇧ bit set to one if overlapping, zero if disjoint

⇧ bitwise and with bit trail after intersection has been found

– compromise
⇧ cannot account for intersections outside overlap

tL0

tL1

tR0
tR1

d

i

s

j

o

i

n

t

tL0

tR0

tL1

tR1

o

v

e

r

l

a

p

p

i

n

g

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 4: Avoid pointless backtracking

⌅ subtrees behind intersection may not always be culled
– due to overlapping bounding boxes

⌅ discard levels with disjoint t-intervals
– cheap

⇧ no t0 values stored

⇧ mask with one bit per level

⇧ bit set to one if overlapping, zero if disjoint

⇧ bitwise and with bit trail after intersection has been found

– compromise
⇧ cannot account for intersections outside overlap

tL0

tL1

tR0
tR1

d

i

s

j

o

i

n

t

tL0

tR0

tL1

tR1

o

v

e

r

l

a

p

p

i

n

g

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 4: Avoid pointless backtracking

⌅ subtrees behind intersection may not always be culled
– due to overlapping bounding boxes

⌅ discard levels with disjoint t-intervals
– cheap

⇧ no t0 values stored

⇧ mask with one bit per level

⇧ bit set to one if overlapping, zero if disjoint

⇧ bitwise and with bit trail after intersection has been found

– compromise
⇧ cannot account for intersections outside overlap

tL0

tL1

tR0
tR1

d

i

s

j

o

i

n

t

tL0

tR0

tL1

tR1

o

v

e

r

l

a

p

p

i

n

g

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 5: Resuming traversal in last node node instead of starting at the root

⌅ pause: state (key and bit trail) must be stored

⌅ resume: start in last node, set bit trail to
– previous bit trail if same ray origin and direction

⇧ transparent/translucent object, cut outs

– 1 for all levels above current level if ray origin or direction has changed
⇧ tracing paths

⇧ refraction

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Summary

⌅ optimized stackless traversal
– backtracking in constant time by perfect hashing
– reduced number of hash lookups

⇧ store references to uncles and grand uncles in nodes

⇧ store most recently postponed node in a register

⌅ additional building blocks currently not used in software (e.g. due to register pressure)
– discard unreachable postponed nodes

– pause and resume traversal in current node

⌅ exhaustive tests
– many different and freely available scenes

– various practical camera positions

– different ray types

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Summary

⌅ optimized stackless traversal
– backtracking in constant time by perfect hashing
– reduced number of hash lookups

⇧ store references to uncles and grand uncles in nodes

⇧ store most recently postponed node in a register

⌅ additional building blocks currently not used in software (e.g. due to register pressure)
– discard unreachable postponed nodes

– pause and resume traversal in current node

⌅ exhaustive tests
– many different and freely available scenes

– various practical camera positions

– different ray types

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Summary

⌅ optimized stackless traversal
– backtracking in constant time by perfect hashing
– reduced number of hash lookups

⇧ store references to uncles and grand uncles in nodes

⇧ store most recently postponed node in a register

⌅ additional building blocks currently not used in software (e.g. due to register pressure)
– discard unreachable postponed nodes

– pause and resume traversal in current node

⌅ exhaustive tests
– many different and freely available scenes

– various practical camera positions

– different ray types

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Results: Performance in M rays/s, NVIDIA Titan X, for Primary/Shadow/Diffuse Rays

Stack [Aila 2009] Stackless [Áfra 2014] ours

Primary Shadow Diffuse P S D P S D

Armadillo 837 236 214 -13% -10% -11% +17% +32% +35%

Conference 786 399 253 -16% -2% -13% +4% +25% +20%

Dragon 743 212 194 -16% -13% -15% +17% +32% +31%

Emily 676 254 234 -20% -12% -14% +9% +26% +25%

Buddha 1237 210 185 -12% -11% -12% +15% +34% +32%

Hairball 190 77 65 -23% -6% -12% +1% +25% +22%

Enchanted Forest 237 81 64 -14% -5% -12% +5% +22% +19%

San-Miguel 246 149 81 -20% -7% -20% +4% +23% +10%

Average -17% -12% -19% +8% +20% +17%

We are hiring.

akeller@nvidia.com

	Efficient Hierarchy Traversal
	Pruning/postponing nodes and backtracking

	Efficient Hierarchy Traversal
	Comparing previous backtracking strategies

	Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
	Building block 1: Using a bit trail, go to nth uncle in constant time
	Building block 2: Two level hashing using an additional displacement table D
	Building block 3: Reducing the number of hash lookups
	Building block 4: Avoid pointless backtracking
	Building block 5: Resuming traversal in last node node instead of starting at the root
	Summary
	Results: Performance in M rays/s, NVIDIA Titan X, for Primary/Shadow/Diffuse Rays

