
Efficient Stackless Hierarchy Traversal
with Backtracking in Constant Time
Nikolaus Binder and Alexander Keller, June, 2016



Efficient Hierarchy Traversal
Pruning/postponing nodes and backtracking

1

32

5

1110

4

9

19

3938

7776

18

8

1

2 3

1



Efficient Hierarchy Traversal
Pruning/postponing nodes and backtracking

1

32

5

1110

4

9

19

3938

7776

18

8

1

2 3

4 5

2

postponed nodes

3



Efficient Hierarchy Traversal
Pruning/postponing nodes and backtracking

1

32

5

1110

4

9

19

3938

7776

18

8

1

2 3

4 5

8 9

4

postponed nodes

3

5



Efficient Hierarchy Traversal
Pruning/postponing nodes and backtracking

1

32

5

1110

4

9

19

3938

7776

18

8

1

2 3

4 5

8 9

18 19

9

postponed nodes

3

5



Efficient Hierarchy Traversal
Pruning/postponing nodes and backtracking

1

32

5

1110

4

9

19

3938

7776

18

8

1

2 3

4 5

8 9

18 19

38 39

19

postponed nodes

3

5



Efficient Hierarchy Traversal
Pruning/postponing nodes and backtracking

1

32

5

1110

4

9

19

3938

7776

18

8

1

2 3

4 5

8 9

18 19

38 39

76 77

38

postponed nodes

3

5



Efficient Hierarchy Traversal
Pruning/postponing nodes and backtracking

1

32

5

1110

4

9

19

3938

7776

18

8

1

2 3

4 5

8 9

18 19

38 39

76 77

38

postponed nodes

3

55



Efficient Hierarchy Traversal
Comparing previous backtracking strategies

1

32

5

1110

4

9

19

3938

7776

18

8

1

2 3

4 5

8 9

18 19

38 39

76 77

Stack

addr(3)

addr(5)



Efficient Hierarchy Traversal
Comparing previous backtracking strategies

1

32

5

1110

4

9

19

3938

7776

18

8

1

2 3

4 5

8 9

18 19

38 39

76 77

Bit TrailStack

addr(3)

addr(5) 1

1

0

0

0



Efficient Hierarchy Traversal
Comparing previous backtracking strategies

1

32

5

1110

4

9

19

3938

7776

18

8

1

2 3

4 5

8 9

18 19

38 39

76 77

Bit TrailStack

addr(3)

addr(5) 1

1

0

0

0

0



Efficient Hierarchy Traversal
Comparing previous backtracking strategies

1

32

5

1110

4

9

19

3938

7776

18

8

1

2 3

4 5

8 9

18 19

38 39

76 77

Bit TrailBit TrailStack

addr(3)

addr(5) 1

1

0

0

0

0

1

1

0

0

0

0



Efficient Hierarchy Traversal
Comparing previous backtracking strategies

Stack
Stackless,

Backtracking
from root

Stackless,
Backtracking

with parents/siblings

state for book keeping (per ray) O(h(tree)) O(1) O(1)

backtracking effort O(1) O(h(tree)) O(h(tree))



Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 1: Using a bit trail, go to nth uncle in constant time

1

32

5

1110

4

9

19

3938

7776

18

8

1

2 3

4 5

8 9

18 19

38 39

76 77

Bit Trail Cur Key

1

1

0

0

0

1

0

0

1

1

0



Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 1: Using a bit trail, go to nth uncle in constant time

1

32

5

1110

4

9

19

3938

7776

18

8

1

2 3

4 5

8 9

18 19

38 39

76 77

Bit Trail Cur Key

1

1

0

0

0

1

0

0

1

1

0



Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 1: Using a bit trail, go to nth uncle in constant time

1

32

5

1110

4

9

19

3938

7776

18

8

1

2 3

4 5

8 9

18 19

38 39

76 77

Bit Trail Cur Key

1

1

1

0

00 1



Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 1: Using a bit trail, go to nth uncle in constant time

1

32

5

1110

4

9

19

3938

7776

18

8

1

2 3

4 5

8 9

18 19

38 39

76 77

Bit Trail Cur Key

1

0

1

0

1



Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 1: Using a bit trail, go to nth uncle in constant time

Perfect Hash Map h: node key k 7! node address addr(k )

⌅ properties
– no collisions

– no need to store keys

– lookup in constant time
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Building block 2: Two level hashing using an additional displacement table D

k 7! (k mod |T |+D[k mod |D|]) mod |T | [Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]

1

2

3

4

5

8

9

18

19

38

39

k mod |T|

k
m

od
|D
|

S = {1,2,3,4,5,8,9,18,19,38,39}

|S|= 11

|T |= 11 = |S|) minimal perfect hash table

|D|= 8

#

1

2

2

2

1

1

1

1

D

T

+0

+0

+0

+0

+0

+0

+0

+0



Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 2: Two level hashing using an additional displacement table D

k 7! (k mod |T |+D[k mod |D|]) mod |T | [Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]

1

2

3

4

5

8

9

18

19

38

39

1

1

1

1

1

1

9

9

9

9

9

9

k mod |T|

k
m

od
|D
|

S = {1,2,3,4,5,8,9,18,19,38,39}

|S|= 11

|T |= 11 = |S|) minimal perfect hash table

|D|= 8

#

1

2

2

2

1

1

1

1

D

T

+0

+0

+0

+0

+0

+0

+0

+0



Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 2: Two level hashing using an additional displacement table D

k 7! (k mod |T |+D[k mod |D|]) mod |T | [Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]

1

2

3

4

5

8

9

18

19

38

39

1

1

1

1

1

1

2

2

2

2

2

2

9

9

9

9

9

9

18

18

18

18

18

18

k mod |T|

k
m

od
|D
|

S = {1,2,3,4,5,8,9,18,19,38,39}

|S|= 11

|T |= 11 = |S|) minimal perfect hash table

|D|= 8

#

1

2

2

2

1

1

1

1

D

T

+0

+0

+0

+0

+0

+0

+0

+0



Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 2: Two level hashing using an additional displacement table D

k 7! (k mod |T |+D[k mod |D|]) mod |T | [Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]

1

2

3

4

5

8

9

18

19

38

39

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

3

3

9

9

9

9

9

9

18

18

18

18

18

18

19

19

19

19

19

19

k mod |T|

k
m

od
|D
|

S = {1,2,3,4,5,8,9,18,19,38,39}

|S|= 11

|T |= 11 = |S|) minimal perfect hash table

|D|= 8

#

1

2

2

2

1

1

1

1

D

T

+0

+0

+0

+0

+0

+0

+0

+0



Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 2: Two level hashing using an additional displacement table D

k 7! (k mod |T |+D[k mod |D|]) mod |T | [Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]
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Building block 2: Two level hashing using an additional displacement table D

k 7! (k mod |T |+D[k mod |D|]) mod |T | [Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]
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Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]
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Building block 2: Two level hashing using an additional displacement table D
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Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]
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Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 2: Two level hashing using an additional displacement table D

k 7! (k mod |T |+D[k mod |D|]) mod |T | [Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]
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Building block 2: Two level hashing using an additional displacement table D

k 7! (k mod |T |+D[k mod |D|]) mod |T | [Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]
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Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 2: Two level hashing using an additional displacement table D

k 7! (k mod |T |+D[k mod |D|]) mod |T | [Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]
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Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 2: Two level hashing using an additional displacement table D

k 7! (k mod |T |+D[k mod |D|]) mod |T | [Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]
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Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 3: Reducing the number of hash lookups

⌅ backtracking statistics
– to sibling: 27%

– to uncle: 15%

– to grand uncle: 15%

⌅ store references to uncle and grand uncle in node
– in unused padding space

– data loaded anyway

⌅ store most recently postponed node in a register
– always used for transitions to siblings

– similar to a short stack, but more powerful

around 57% alltogether
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Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 4: Avoid pointless backtracking

⌅ subtrees behind intersection may not always be culled
– due to overlapping bounding boxes

⌅ discard levels with disjoint t-intervals

– cheap
⇧ no t0 values stored

⇧ mask with one bit per level

⇧ bit set to one if overlapping, zero if disjoint

⇧ bitwise and with bit trail after intersection has been found

– compromise
⇧ cannot account for intersections outside overlap
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Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 5: Resuming traversal in last node node instead of starting at the root

⌅ pause: state (key and bit trail) must be stored

⌅ resume: start in last node, set bit trail to
– previous bit trail if same ray origin and direction

⇧ transparent/translucent object, cut outs

– 1 for all levels above current level if ray origin or direction has changed
⇧ tracing paths

⇧ refraction



Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Summary

⌅ optimized stackless traversal
– backtracking in constant time by perfect hashing
– reduced number of hash lookups

⇧ store references to uncles and grand uncles in nodes

⇧ store most recently postponed node in a register

⌅ additional building blocks currently not used in software (e.g. due to register pressure)
– discard unreachable postponed nodes

– pause and resume traversal in current node

⌅ exhaustive tests
– many different and freely available scenes

– various practical camera positions

– different ray types
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Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Results: Performance in M rays/s, NVIDIA Titan X, for Primary/Shadow/Diffuse Rays

Stack [Aila 2009] Stackless [Áfra 2014] ours

Primary Shadow Diffuse P S D P S D

Armadillo 837 236 214 -13% -10% -11% +17% +32% +35%

Conference 786 399 253 -16% -2% -13% +4% +25% +20%

Dragon 743 212 194 -16% -13% -15% +17% +32% +31%

Emily 676 254 234 -20% -12% -14% +9% +26% +25%

Buddha 1237 210 185 -12% -11% -12% +15% +34% +32%

Hairball 190 77 65 -23% -6% -12% +1% +25% +22%

Enchanted Forest 237 81 64 -14% -5% -12% +5% +22% +19%

San-Miguel 246 149 81 -20% -7% -20% +4% +23% +10%

Average -17% -12% -19% +8% +20% +17%
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