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The camera sees :

Why is computer vision hard?
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Neurons in the brain

Output

Deep Learning: Neural network 

Andrew Ng

Artificial Neural Networks
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Yes/No

(Mug or not?)

What is a neural network?
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Supervised learning 
(learning from tagged data)

Yes

No

YX
Input 
Image

Output tag: Yes/No
(Is it a coffee mug?)

Data:
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Learning X ➡ Y mappings is hugely useful



@ctnzr

What do we want AI to do?

Drive us to work
Serve drinks?

Help us 
communicate

帮助我们沟通

Keep us 
organized

Help us find 
things

Guide us to 
content
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OCR-based Translation App
Baidu IDL

hello
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Medical Diagnostics App
Baidu BDL

AskADoctor can assess 
520 different diseases, 
representing ~90 percent 
of the most common 
medical problems.
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Image Captioning
Baidu IDL

A yellow bus driving down a road 
with green trees and green grass in 
the background. 

Living room with white couch and 
blue carpeting. Room in apartment 
gets some afternoon sun. 
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Image Q&A
Baidu IDL

Sample questions and answers
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Natural User Interfaces

• Goal: Make interacting with computers as 
natural as interacting with humans

• AI problems:
– Speech recognition
– Emotional recognition
– Semantic understanding
– Dialog systems
– Speech synthesis
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Demo

• Deep Speech public API
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Machine learning in practice

• Enormous amounts of research time spent 
inventing new features.

Idea

CodeTest

Hack up in Matlab

Run on workstation

Think really hard…
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Why Deep Learning?

1. Scale Matters
– Bigger models usually win

2. Data Matters
– More data means less 

cleverness necessary

3. Productivity Matters
– Teams with better tools can try out more ideas

Data & Compute

Accuracy
Deep Learning

Many previous 
methods



@ctnzr

Scaling up

• Make progress on AI by focusing on systems

– Make models bigger

– Tackle more data

– Reduce research cycle time
• Accelerate large-scale 

experiments
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Training Deep Neural Networks

yj = f

 
X

i

wijxi

!
x

w y

• Computation dominated by dot products
• Multiple inputs, multiple outputs, batch 

means GEMM
– Compute bound

• Convolutional layers even more compute 
bound
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Computational Characteristics

• High arithmetic intensity
– Arithmetic operations / byte of data
– O(Exaflops) / O(Terabytes) : 10^6

• In contrast, some other ML training jobs are 
O(Petaflops)/O(Petabytes) = 10^0

• Medium size datasets
– Generally fit on 1 node
– HDFS, fault tolerance, disk I/O not bottlenecks

Training 1 model: ~20 Exaflops
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Deep Neural Network training is HPC

Idea

CodeTest

• Turnaround time is key

• Use most efficient hardware
– Parallel, heterogeneous computing
– Fast interconnect (PCIe, Infiniband)

• Push strong scalability
– Models and data have to be of 

commensurate size
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Training: Stochastic Gradient Descent

• Simple algorithm
– Add momentum to power through local minima
– Compute gradient by backpropagation

• Operates on minibatches
– This makes it a GEMM problem instead of GEMV

• Choose minibatches stochastically
– Important to avoid memorizing training order

• Difficult to parallelize
– Prefers lots of small steps
– Increasing minibatch size not always helpful 
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Limitations of batching

Error

Iterations

Batch size = 𝑛

Batch size = 2𝑛

Spending 2x the work picking a direction
Doesn’t reduce iteration count by 2x
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SVAIL Infrastructure

1 
http://www.tyan.com 

 

 
 

 
 

FT77CB7079 
 

Service Engineer’s Manual 
 

 
 

 
 
 
 

NVIDIA GeForce
GTX Titan X

Titan X x8

Mellanox Interconnect

• Software: CUDA, MPI, Majel (SVAIL internal 
library)

• Hardware:
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Node Architecture

76 
http://www.tyan.com 

 

4.2   Block Diagram 
 
 

 
 
 

S7079 Block Diagram 
 

 

 
 
 
 
 
 
 
 
 
 
 
 

• All pairs of GPUs communicate 
simultaneously over PCIe Gen 3 x16

• Groups of 4 GPUs form Peer to Peer domain
• Avoid moving data to CPUs or across QPI
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Parallelism

Model Parallel

Data Parallel

MPI_Allreduce()

Training Data Training Data
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Speech Recognition: Traditional ASR

• Getting higher performance is hard
• Improve each stage by engineering

Accuracy Traditional ASR

Data + Model Size

Expert engineering.
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Speech recognition: Traditional ASR

• Huge investment in features for speech!
– Decades of work to get very small improvements

Spectrogram MFCC Flux
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Speech Recognition 2: Deep Learning!

• Since 2011, deep learning for features
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“The quick brown fox 
jumps over the lazy 

dog.”
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Speech Recognition 2: Deep Learning!

• With more data, DL acoustic models perform 
better than traditional models

Accuracy Traditional ASR

Data + Model Size

DL V1 for Speech
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Speech Recognition 3:  “Deep Speech”

• End-to-end learning

“The quick brown fox 
jumps over the lazy 

dog.”
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Speech Recognition 3: “Deep Speech”

• We believe end-to-end DL works better 
when we have big models and 
lots of data

Accuracy Traditional ASR

Data + Model Size

DL V1 for Speech

Deep Speech
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End-to-end speech with DL

• Deep neural network predicts characters directly 
from audio

. . . 

. . . 

T          H        _         E   …      D   O    G            
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Recurrent Network

• RNNs model temporal dependence
• Various flavors used in many applications

– LSTM, GRU, Bidirectional, …
– Especially sequential data (time series, text, etc.)

• Sequential dependence complicates 
parallelism
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Connectionist Temporal Classification
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warp-ctc

• Recently open sourced our CTC 
implementation (sorts from ModernGPU)

• Efficient, parallel CPU and GPU backend
• 100-400X faster than other implementations
• Apache license, C interface

https://github.com/baidu-research/warp-ctc
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Training sets

• Train on 45k hours
(~5 years) of data
– Still growing

• Languages
– English
– Mandarin

• End-to-end deep learning is key to 
assembling large datasets
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All-reduce

• We implemented our own all-reduce out of 
send and receive

• Several algorithm choices based on size
• Careful attention to affinity and topology
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Scalability 

• Batch size is hard to increase 
– algorithm, memory limits

• Performance at small batch sizes leads to 
scalability limits
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Performance for RNN training

• 55% of GPU FMA peak using a single GPU
• ~48% of peak using 8 GPUs in one node
• Weak scaling very efficient, albeit algorithmically 

challenged
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Strong scaling RNNs with Persistent Kernels

• Strong scaling is hard!
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• Small batch size bad for standard RNN:
– Less reuse of parameters
– Bad SIMD efficiency

• But RNNs reuse parameters across time
– Can we stash them in register file?
– Make RNNs compute limited at small batch?
– Enable strong scaling?

• Persistent Kernels hard to implement:
– Require global synchronization (CUDA hates this)
– MB of parameters pinned to register file

• Limitations:
– Size, architecture (RNN vs. LSTM vs. GRU etc.)

Strong scaling RNNs with Persistent Kernels

[G. Diamos, 
ICML 2016]
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Persistent Kernel implementation

• SASS assembly for Maxwell (using Maxas)
• Supports up to 1152 neurons on TitanX

– 5 MB of user data pinned in registers!

• SW Pipeline following limiters:

0 200 400 600

FP throughput
Memory latency

Memory bandwidth
Barrier latency

Communication latency

nanoseconds

[G. Diamos, 
ICML 2016]
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Persistent Kernel Performance (TitanX)

• https://github.com/baidu-research/persistent-rnn

[G. Diamos, 
ICML 2016]
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Strong scaling RNNs with Persistent Kernels
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Determinism

• Determinism very important
• So much randomness, 

hard to tell if you have a bug
• Networks train despite bugs,

although accuracy impaired
• Reproducibility is important

– For the usual scientific reasons
– Progress not possible without reproducibility

• We use synchronous SGD
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Precision

• FP16 mostly works
– Use FP32 for softmax and weight updates

• More sensitive to labeling error
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CPU Server

CPU
Thread 1

Thread 2

Thread 3

Thread 4

Batch Dispatch

[C. Fougner]
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GPU Server

GPU

Batch Dispatch

[C. Fougner]
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Thoughts

• Computationally dense processors (like 
GPUs) required

• Programmability
– We don’t know the algorithms of the future

• Lower precision
– But not too low
– Interesting algorithm/dataset engineering here

• We need better support for multi-GPU 
– E.g. Atomics between GPUs, collectives
– Looking forward to NVLink
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Conclusion

• Deep Learning is solving many hard 
problems

• Training deep neural networks is an HPC 
problem

• Scaling brings AI progress!
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Thanks

• Andrew Ng, Adam Coates, Awni Hannun, 
Patrick LeGresley, Greg Diamos, Chris 
Fougner … and all of SVAIL
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