
Alexander Reshetov David Luebke

NVIDIA

Infinite Resolution Textures

DISTANCE

ASSETS

3D

Models

2D

Textures

DISTANCE

ASSETS

3D

Models

2D

Textures

DISTANCE

ASSETS

3D

Models

2D

Textures

= raster image + silhouettes @ grid

float4 color = colorMap.SampleLevel(colorSampler, uv + , lod);

IRT calculates duv at runtime by evaluating distances to the
precomputed silhouette edges

instead of
float4 color = colorMap.SampleLevel(colorSampler, uv, lod);

use
float4 color = colorMap.SampleLevel(colorSampler, uv + duv, lod);

Just by tempering duv, we can blend between

• IRT (@ closeups) and

• traditional textures at a distance

https://www.pinterest.com/mizzchanty/facebook-quotes
pinned from sharenator.com

⇒
IRT

pinned from Scarlett Image

• Silmaps
Pradeep Sen

• Bixels
Jack Tumblin,
Prasun Choudhury

• Vector Texture Maps
Nicolas Ray et al
Curvilinear Contours
Stefan Gustavson

• Pinchmaps
Marco Tarini,
Paolo Cignoni

• piecewise-linear edges
• always interpolating colors on

the same side of the edge
• with a custom interpolation

scheme

• Silmaps
Pradeep Sen

• Bixels
Jack Tumblin,
Prasun Choudhury

• Vector Texture Maps
Nicolas Ray et al
Curvilinear Contours
Stefan Gustavson

• Pinchmaps
Marco Tarini,
Paolo Cignoni

• piecewise-linear edges
• always interpolating colors on

the same side of the edge
• with a custom interpolation

scheme

• decompose the texture plane
into patches with straight
boundary segments

• 10 patch functions

• Silmaps
Pradeep Sen

• Bixels
Jack Tumblin,
Prasun Choudhury

• Vector Texture Maps
Nicolas Ray et al
Curvilinear Contours
Stefan Gustavson

• Pinchmaps
Marco Tarini,
Paolo Cignoni

• piecewise-linear edges
• always interpolating colors on

the same side of the edge
• with a custom interpolation

scheme

• decompose the texture plane
into patches with straight
boundary segments

• 10 patch functions

• implicit cubic polynomials
for edges

• binary classification function
defines a patch

• Silmaps
Pradeep Sen

• Bixels
Jack Tumblin,
Prasun Choudhury

• Vector Texture Maps
Nicolas Ray et al
Curvilinear Contours
Stefan Gustavson

• Pinchmaps
Marco Tarini,
Paolo Cignoni

• piecewise-linear edges
• always interpolating colors on

the same side of the edge
• with a custom interpolation

scheme

• decompose the texture plane
into patches with straight
boundary segments

• 10 patch functions

• implicit cubic polynomials
for edges

• binary classification function
defines a patch

• a single quadratic silhouette
edge per pinchmap texel

• use distance to the edge to
compute new uv

pinchmaps IRT

•Occam's Razor
the simpler one is
usually better

• Einstein Principle
“a scientific theory
should be as
simple as possible,
but no simpler ”

•…will be
resampled from
the original texture

•define an implicit
quadratic curve,

• so all samples
that have 4
pinchmap texels…

•pinchmap texels Issues

•No intersections

X
• zero adjustment

for all ‘outside’
samples ⇒
discontinuous
duv

X

X

X

…IRT uses more evolved processing…

…that is easier to explain

legs-isential quandary
by Roger N. Shepard

First, we need curved edges

2 2 pixels

Those edges are split into segments and we create truncated Voronoi regions. These regions are offset from
the curve by a specified distance (of a few pixels). It can also be reduced for the open-ended segments and
bifurcated edges.

X

X

float4 color = colorMap.SampleLevel(colorSampler, uv + , lod);

At run time, we just move the sample away from the edge. The samples outside Voronoi regions will have zero duv offset.

1. Temper* raster and vector modes just by scaling
the texture coordinate adjustment using
pixel/texel ratio as

float pixratio = 0.5*length(fwidth(uv * texdim));
duv *= min(1, 2 * (1 - pixratio)) / texdim;

2. Perform antialiasing in a single fetch by adjusting lod

3. Do whatever we like with it (like ‘soft landing’)

* having the elements mixed in satisfying proportions

http://www.merriam-webster.com/dictionary/tempered

http://www.merriam-webster.com/dictionary/tempered

original trilinear

crisp edges smooth edgestweak duv

soft
landing

For each sample ,
we need

• scalar distance to
the curve d

•offset vector ni

d

ni

To compute ni

we could

• interpolate n12

•with weights |w12|
Note:

signs of w12 can also be used to
verify that the sample is in
curve’s Voronoi region

nin1

n2

w1 w2

• ∃ numerous prior art approaches

• To compute it even faster, we propose two algorithms:

1. Implicit representation of cubic Bézier curves – using
barycentric coordinates (savings: 6 terms instead of 10)
(see also “Rendering Cubic Curves on a GPU with Floater's
Implicitization” by Ron Pfeifle in JGT 2012)

2. A quotient of two multivariate polynomials over variables
that we choose (to make life easier)
≈ beefed up Phong interpolation in 1D

• unless strict reproduction
of Bézier curves is required,

√ it should be a method of
choice

√ since it is unconditionally
stable; there are other
interesting possibilities
as well

